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Let E be an arc on the unit circle and let L2(E) be the space of all square inte-
grable functions on E. Using the Banach–Steinhaus Theorem and the weak* com-
pactness of the unit ball in the Hardy space, we study the L2 approximation of
functions in L2(E) by polynomials. In particular, we will investigate the size of the
L2 norms of the approximating polynomials in the complementary arc Ẽ of E. The
key theme of this work is to highlight the fact that the benefit of achieving good
approximation for a function over the arc E by polynomials is more than offset by
the large norms of such approximating polynomials on the complementary arc Ẽ.
© 2001 Elsevier Science (USA)
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1. INTRODUCTION

Let E be an arc on the unit circle T: |z|=1. We define L2(E) to be the
set of all measurable functions which are square integrable on the set E.
The inner product over the set E is defined as

(f, g)E=
1
2p

F
E
fḡ |dz|

and the L2 norm of f over the set E is ||f||E=`(f, f)E. When E=T, we
let (f, g)=(f, g)T and ||f||=||f||T. Let D be the unit disc, |z| < 1, H2(D)
={f: f is analytic in D and f ¥ L2(T)}, and H2(E) is the Hilbert space
consisting of all the functions in H2(D) with the inner product (f, g)E.
We now describe the main results of this work.
We first mention the following result concerning the polynomial approxi-
mation of functions in L2(E).

Theorem 1.1. Let m(E) denote the length of E. If m(E) < 2p then, the
set of polynomials are dense in L2(E).



Variants of this theorem are well known; see, for instance Theorem 3.15
of [2, p. 90].
The following two results provide a sharp contrast to Theorem 1.1.
Let Vn be the set of polynomials of degree [ n. For a given f in H2(D),
let p̄n(f) be the polynomial in Vn which provides the best L2 approxima-
tion for f over the arc E:

||p̄n(f)−f||E= inf
p ¥ Vn
||p−f||E.

Theorem 1.2. Let

B={f: f ¥H2(D) and sup
n
||p̄n(f)||E <.}

Then B is of first category in H2(D).

Hence, for almost all the functions in H2(D), the process of the best
approximation over the arc E will result in a large norm in the comple-
mentary arc Ẽ.
Let f be a function defined on T and let f|E denote the restriction of f
on the arc E.

Theorem 1.3. Suppose g ¥ L2(E) and g ] f|E for any f ¥H2(D). If {pn}
is a sequence of polynomials such that

||pn−g||E 0 0,(1.1)

Then

sup
n
||pn ||=.

We will study the reproducing kernel of H2(D) restricted to the arc E
and obtain, as eigenfunctions, a class of polynomials which are orthogonal
on arcs E, Ẽ and the entire circle T. Theorem 1.2 follows from the
Banach–Steinhaus Theorem and the properties of the eigenvalues of these
polynomials.
Theorem 1.3 is a direct consequence of the weak* compactness of the
bounded sets in H2(D)-a special case of the Alaoglu Theorem [3, p. 66].

2. PROPERTIES OF THE EIGENVALUES AND EIGENFUNCTIONS
OF THE REPRODUCING KERNEL RESTRICTED TO THE ARC E

In this section, we will study the basic properties of the orthogonal
polynomials particularly suited for the study of the best L2 approximation
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process over the arc E. Unlike the ones derived from the standard
orthogonalization process (see, for instance, [5, Chapt. XI]), these are the
eigenfunctions of the reproducing kernel of the unit disc restricted to the
arc E. Most interestingly, they are also orthogonal over the complementary
arc Ẽ and this allows us to carry out the generalized Fourier series expan-
sion of a function over the arcs E and Ẽ using the same orthogonal
sequence.
It is well known that the monomials zn, n=0, 1, 2, ..., form a complete
orthonormal basis for the space H2(D). Let f ¥ L2(T) and

f̂(n)=(f, zn).

Then the projection of Pf of f onto H2(D) can be computed by the
following formula,

Pf(z)=C
.

n=0
f̂(n) zn=(1/2p) C

.

n=0
F
T
f(w) w̄n |dw| zn(2.1)

=
1
2p

F
T
K(w, z)f(w) |dw|,

where z ¥ D and K(w, z)=1/(1−wz̄).
Let E be an arc on T. We define, for f ¥ L2(T),

P(E)f(z)=C
.

n=0
f̂E(n) zn=

1
2p

F
E
K(w, z)f(w) |dw|,(2.2)

where f̂E(n)=(f, zn)E. For f ¥ L2(E), we extend f to T by defining the
values of f to be identically zero in the complement of E. Then P(E) maps
L2(E) into H2(D).
In the following, we shall devote special attention to the properties of the
following operator,

PN(E) f(z)=C
N

n=0
f̂E(n) zn=1/2p F

E
KN(w, z) f(w) |dw|(2.3)

which maps f into the space Vn of the polynomials of degree less than or
equal to N, where KN(w, z)=(1−wNz̄N)/(1−wz̄).
We first establish

Theorem 2.1. Let N be a fixed positive integer and E be an arc with
m(E) < 2p.
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(a) The operator PN(E) is a non-negative Hermitian operator from
L2(E) to VN.
(b) PN(E) has exactly N+1 eigenvalues {lN, n}, and the eigenfunctions

{fN, n} can be chosen to form orthonormal polynomials of degree [N (In
Corollary 2.1 we will show that {fN, n} are orthogonal simultaneously with
respect to the inner products on E and Ẽ; i.e. with respect to different inner
products).

(c) If PN(E) f=lf, then PN(Ẽ) f=(1−l) f.
(d) 0 < lN, n < 1, n=0, 1, ..., N.
(e) Let lN, N and lN, 0 be, respectively, the largest and smallest eigen-

values of PN(E). Then

lim
NQ.

lN, N=1 and lim
NQ.

lN, 0=0.

Proof. (a) Let f ¥ L2(E) and define f=0 for z ¥ Ẽ. Then the Fourier
coefficients of f are given by

f̂(n)=1/2p F
2p

0
f(e it) e−int dt=f̂E(n).

From Parseval’s identity, we conclude that

||PN(E) f||
2
E [ ||PN(E) f||

2
T=C

N

n=0
|f̂(n)|2 [ C

.

n=−.
|f̂(n)|2=||f||2E.(2.4)

This shows that PN(E): L2(E)Q VN is bounded and of norm [ 1. It is
Hermitian because its kernel satisfies KN(w, z)=KN(z, w). And since

(PN(E) f, f)E=C
N

n=0
|f̂(n)|2 \ 0,

it is non-negative.
(b) Since the range of PN(E) is in VN, the eigenfunctions of PN(E)

belong to VN. The conclusion follows immediately from the fact that
PN(E): VN Q VN is Hermitian.
(c) We note that for any polynomial f of degree [N,

PN(T) f=f.(2.5)
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Therefore KN(w, z) is the reproducing kernel for VN. Hence, if f is an
eigenfunction of PN(E), f belongs to VN and from (2.5),

(1−l) f=PN(T) f−PN(E) f(2.6)

=
1
2p

F
T
KN(w, z) f(w) |dw|−

1
2p

F
E
KN(w, z) f(w) |dw|

=
1
2p

F
Ẽ
KN(w, z) f(w) |dw|

=PN(Ẽ) f.

(d) Since PN(E) f is in VN, ||PN(E) f||E < ||PN(E) f||; hence, we have
strict inequalities in (2.4), so that it is clear that any eigenvalue of PN(E) is
less than one. From (c), we see that if l=0, then l=1 is an eigenvalue for
PN(Ẽ) which again contradicts (2.4).
We recall that

lN, N= sup
f ¥ L2(E)

||PN(E) f||E/||f||E.

We will prove (e) by showing

lim
NQ.

sup
f
||PN(E) f||E /||f||E=1.

Without loss of generality, we assume

E={z ¥ T : |arg z| [ a}

Let

kN(e it)=(1/(N+1)) 1
sin((N+1) t/2)
sin(t/2)

22

be the Nth Fejér kernel [2, p. 12]. Then kN(e it) is a trigonometric
polynomial of degree N, ||kN ||=1 and

lim
nQ.
kN(e it)=0(2.7)

uniformly on Ẽ. We add that kN(z) has a pole of order N at z=0; it is not
a polynomial. To remove the pole, we consider

h(e it)=e iNtkN(e it).
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Then h(z) is a polynomial of degree 2N and, from (2.5),

Pm(T) h=h(2.8)

for m \ 2N.
Let

hE(e it)=3
0, if e it ¥ Ẽ
h, if e it ¥ E

and u=h−hE. The reader should keep in mind the dependence of u, h, hE
on N. Then, from (2.7),

||u||Q 0 and ||hE ||E Q 1 as NQ..(2.9)

Then, for m \ 2N,

||hE−Pm(E) hE ||E [ ||hE−Pm(E) hE ||

=||−u+h−Pm(E) h||

=||−u+Pm(T) h−Pm(E) h|| (from (2.8))

=||−u+Pm(Ẽ) h|| (from (2.6))

=||−u+Pm(Ẽ) u||

[ 2 ||u||,

and this implies that

| ||Pm(E) hE ||E−||hE ||E | [ 2 ||u||.

Hence, for all m \ 2N we deduce from (2.9),

| ||Pm(E) hE ||E /||hE ||E−1| [ 2 ||u||/||hE ||Q 0

as NQ.. And this along with (c) implies that the sequences of the largest
and the smallest eigenvalues tend to 1 and 0, respectively.
It is natural to consider analogous result for the case N=., however,
the method involved is completely different from the one above, we will
treat it separately in Section 6.
The most remarkable property of the eigenfunctions of PN(E) is their
unusually strong degree of orthogonality.

Corollary 2.1. Let fN, n, n=0, 1, 2, ..., N, be the eigenfunctions of
PN(E). Then,
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(a) they are simultaneously orthogonal on the arcs E, Ẽ, and T,
(b) if ||fN, n ||E=1, then

||fN, n ||=
1

`lN, n
and ||fN, n ||Ẽ==

1
lN, n
−1 .

Proof. (a) The orthogonality assertion follows from the fact (Theorem
2.1(c)) that fN, n are the eigenfunctions of the Hermitian operators PN(E)
and PN(Ẽ).
(b) Since KN(w, z) is the reproducing kernel for the polynomials of

degrees [N and {fN, n} is a complete orthogonal basis for the space of the
polynomials of degrees [N, we deduce that

KN(w, z)=C
N

n=0

fN, n(w) ·fN, n(z)
||fN, n || · ||fN, n ||

.

On the other hand,

KN(w, z)=C
N

n=0
lN, nfN, n(w)fN, n(z).

For a fixed z, KN(w, z) is a polynomial of degree N and since the repre-
sentation of any polynomial of degree [N by fN, n is unique, the first
assertion follows immediately by comparing these two expressions for
KN(w, z). The norm of f on the arc Ẽ can be computed from the equation

(fN, n, fN, n)=(fN, n, fN, n)E+(fN, n, fN, n)Ẽ

3. PROOF OF THEOREM 1.1

First we recall a well known theorem of F. Carlson [6, p. 185]: Let F(z)
be analytic in the half plane Re z > −c for some c > 0. If

|F(z)|=O(exp(a |z|)),

where 0 < a < p, and F(n)=0 for every integer n \ 0, then F(z) — 0.
Without loss of generality, assume E={z ¥ T : |arg z| [ a}.
Suppose there exists an f ¥ L2(E) such that (f, p)E=0 for all polyno-
mials p. Then (f, zn)E=0 for all integers n > 0. Consider

F(z)=
1
2p

F
a

−a
f(e it) e−izt dt.
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Then f is an entire function of exponential type t, t [ a and F(n)=0 for
all integers n \ 0. This implies, according to the above result, F(z)=0 for
all z and, in particular, F(n)=0 for all negative integers as well. Thus all
the Fourier coefficients of f are zero and from the uniqueness theorem of
the Fourier series, we deduce that f=0 a.e. on E. This established the
result.
An alternative proof is provided by the referee and we sketch it as
follows:
By Mergelyan’s theorem [4, Chap. 20], the polynomials are dense in the
continuous functions on E. Moreover, the continuous functions are dense
in L2(E). Thus, the statement of Theorem 1.1 follows.

4. PROOF OF THEOREM 1.2

We define, for a given f ¥H2(E),

p̄N=C
N

n=0
(f, fN, n)E fN, n.

Then it is the least mean square approximation of f by polynomials of
degrees [N on the arc E.
Let N be a fixed positive integer. For every f in H2(E), we define
TNf=p̄N. Then TN is a bounded linear operator from (H2(E), || ||E) to
(H2(Ẽ), || ||Ẽ). Moreover, the norm is ||TN ||=`

1
lN, 0
−1 (This is an analogue

of the Lebesgue constant [2, p. 47] for the approximation of the Fourier
series by the partial sums). The proof follows immediately from the simple
inequality:

||TNf||
2
Ẽ =C

N

n=0

1 1
lN, n
−12 |(f, fN, n)E |2

[ 1 1
lN, 0
−12 C

N

n=0
|(f, fN, n)E |2

[ 1 1
lN, 0
−12 ||f||2E.

Therefore, ||TN || [`(1/lN, 0−1) and the equality is achieved by f=fN, 0.
From Theorem 2.1(e),

lim
NQ.

||TN ||=..
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Now, from the uniform boundedness principles (Banach–Steinhaus
Theorem) [3, p. 43], we conclude that the set B is of first category in
H2(D).

5. PROOF OF THEOREM 1.3

We prove by contradiction. Suppose that ||pn || [M<.. Then there
exists a subsequence {pnj} and F ¥H2(D) such that

pnj Q F weakly.

(This follows from the fact that a bounded ball in H2(D) is weak*
compact).
We claim that g=F a.e. on E.
To see this, let v ¥ C.(T) with support S(v) … E. Then its Fourier series
converges uniformly to v.We write

v=C
.

n=0
cne int+ C

−1

n=−.
cne int=j+f.(5.1)

Then j ¥H2(D) and f is orthogonal to H2(D): (f, f)=0 for every
f ¥H2(D).Write

(v, F−g)E=(v, F−pnj )E+(v, pnj −g)E.

From Schwarz inequality and (1.1), as nj Q.,

|(v, pnj −g)E | [ ||v|| · ||pnj −g||E Q 0,(5.2)

and

(v, F−pnj )E=(v, F−pnj ) (since S(v) … E)(5.3)

=(j+f, F−pnj )

=(j, F−pnj )+(f, F−pnj )

=(j, F−pnj ) (orthogonality of f toH2(D))

Q 0 (pnj Q F weakly).

Thus, from (5.1), (5.2), and (5.3), we deduce that (v, F−g)=0 for all
such v. This implies that g=F a.e. on E and thus contradicts the assump-
tion that g ] f|E for any f in H

2(D).
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6. THE SPECTRUM IN THE LIMITING CASE: N=.

We will establish

Theorem 6.1. Letm(E) < 2p.Then the operatorP(E) has only continuous
spectrum.

We recall, from (2.2), that

P(E) f=C
.

n=0
f̂E(n) zn

=
1
2p

F
E
f(w)/(1−w̄z) |dw|.

We begin with some elementary properties of P(E).

Lemma 6.2. Let f ¥ L2(E). Then
(a) P(E) is a bounded, Hermitian and non-negative operator from

L2(E) to H2(E).
(b) if f ¥H2(D) and c is a constant, then

P(E) f=cf+
1
2p

F
T
(q(w)−c) f(w)/(1−w̄z) |dw|,

where q is the characteristic function of the arc E.

The proof of (a) follows from (2.4) by setting N=..
The identity in (b) is an immediate consequence of the fact that
1/(1−wz̄) is the reproducing kernel for H2(D):

f(z)=(1/2p) F
T
f(w)/(1−zw̄) |dw|.

Lemma 6.3. Let f ¥H2(D) and g ¥ L.(T) be real. If g ] 0 a.e. and

F
T
g(w) f(w)/(1−w̄z) |dw|=0(6.1)

for all |z| < 1, then f=0 a.e.

Proof. Expanding the integral in (6.1) into a power series of z, we
obtain, for z in D,

C
.

n=0

1F
T
g(w) f(w) w̄n |dw|2 zn=F

T
g(w) f(w)/(1−w̄z) |dw|=0.
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This implies

F
2p

0
g(e it) f(e it) e−int dt=0

for all n \ 0; hence, the Fourier series of gf is of the form

g(e it) f(e it)= C
−1

n=−.
ane int.

Let G=fg. Then G(0)=0 and G ¥H2(D), since it clearly belongs to
L2(T) and all its Fourier coefficients corresponding to the negative integers
are zero. Now let H(z)=G(z) f(z). Then H ¥H1(D), H(0)=0; and since
H=g |f|2, H(z) is real valued for all |z|=1. Thus, from the Poisson’s
integral formula,

H(z)=
1
2p

F
2p

0

1−r2

1+r2−2r cos(h−t)
H(e it) dt (z=re ih)

is real valued for all z in D which clearly contradicts the analyticity of H
unless H is identically zero and which, in turn, yields the desired conclu-
sion: f=0 a.e.
To prove Theorem 6.1, we suppose that there exists an f in H2(D) such
that P(E) f=lf for some 0 < l < 1. Choosing c=l in Lemma 6.2(b) and
applying Lemma 6.3 with g(w)=q(w)−c, we conclude that f=0 a.e. This
proves that P has no eigenvalues.

7. COMMENTS

This work is motivated in large part by problems involving the signal
processings in which, for an obvious practical reason, one is required to
recover the signals by approximation using the band-limited or time-limited
functions (see [1, Chap. 3]) and since the norm of a signal function mea-
sures the total power of the signal, it is desirable to achieve a good approx-
imation with small norms. In our setting, the information is provided only
on the arc E (an analogue of being time-limited) and we seek to recover the
information by approximation using polynomials of fixed degrees (band-
limited). The fact that the norms of the approximating polynomials become
unbounded, as in the cases of Theorems 1.2 and 1.3, leads naturally to the
interesting question of finding an optimal approximation procedure in a
situation in which only partial information is provided.
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